什么是納米激光器? 納米激光器的分類
納米激光器,是指由納米線等納米材料作為諧振腔,在光激發(fā)或電激發(fā)下能夠出射激光的微納器件。
①量子線激光器 隨著科學家研制出功率比傳統(tǒng)激光器大1000倍的量子線激光器,從而向創(chuàng)造速度更快的計算機和通信設(shè)備邁進了一大步。這種激光器可以提高音頻、視頻、因特網(wǎng)及其他采用光纖網(wǎng)絡的通信方式的速度,它是由來自耶魯大學、位于新澤西洲的朗訊科技公司貝爾實驗室及德國德累斯頓馬克斯·普朗克物理研究所的科學家們共同研制的。這些較高功率的激光器會減少對昂貴的中繼器的要求,因為這些中繼器在通信線路中每隔80km(50mile)安裝一個,再次產(chǎn)生激光脈沖,脈沖在光纖中傳播時強度會減弱(中繼器)。 ②量子點激光器 由直徑小于20nm的一堆物質(zhì)構(gòu)成或者相當于60個硅原子排成一串的長度的量子點,可以控制非常小的電子群的運動而不與量子效應沖突?茖W家們希望用量子點代替量子線獲得更大的收獲,但是,研究人員已制成的量子點激光器卻不盡人意。原因是多方面的,包括制造一些大小幾乎完全相同的電子群有困難。大多數(shù)量子裝置要在極低的溫度條件下工作,甚至微小的熱量也會使電子變得難以控制,并且陷入量子效應的困境。但是,通過改變材料使量子點能夠更牢地約束電子,日本電子技術(shù)實驗室的松本和斯坦福大學的詹姆斯和哈里斯等少數(shù)幾位工程師最近已制成可在室溫下工作的單電子晶體管。但很多問題仍有待解決,開關(guān)速度不高,偶然的電能容易使單個電子脫離預定的路線。因此,大多數(shù)科學家正在努力研制全新的方法,而不是仿照目前的計算機設(shè)計量子裝置。 4.微腔激光器 微腔激光器是當代半導體研究領(lǐng)域的熱點之一,它采用了現(xiàn)代超精細加工技術(shù)和超薄材料加工技術(shù),具有高集成度、低噪聲的特點,其功耗低的特點尤為顯著,100萬個激光器同時工作,功耗只有5W。 該激光器主要的類型就是微碟激光器,即一種形如碟型的微腔激光器,最早由貝爾實驗室開發(fā)成功。其內(nèi)部為采用先進的蝕刻工藝蝕刻出的直徑只有幾微米、厚度只有100nm的極薄的微型園碟,園碟的周圍是空氣,下面靠一個微小的底座支撐。由于半導體和空氣的折射率相差很大,微碟內(nèi)產(chǎn)生的光在此結(jié)構(gòu)內(nèi)發(fā)射,直到所產(chǎn)生的光波積累足夠多的能量后沿著它的邊緣折射,這種激光器的工作效率很高、能量閾值很低,工作時只需大約100μA的電流。 自從McCall等人1992年報道了用低溫光抽運 InGaAsP系材料制造的微腔激光器以來,半導體微碟激光器先后在GaAlAs/GaAs、GaN/A1GaN、InGaN/GaN等多種新材料體系中以脈沖室溫電抽運和連續(xù)室溫電抽運和連續(xù)室溫光抽運等多種工作方式實現(xiàn)了激光發(fā)射。美國加利福尼亞大學、伊利諾伊州Northwesten大學、貝爾實驗室、俄勒岡大學、日本YoKohama National大學和朝鮮科學與技術(shù)高級研究學院等均開展了InGaAs/InGaAsP量子阱的研究和量子級聯(lián)微碟激光器的開發(fā)和研究,并已取得了很大的進展。 在國內(nèi),長春光學精密機械學院高功率半導體激光國家重點實驗室和中國科學院北京半導體研究所從經(jīng)典量子電動力學理論出發(fā)研究了微碟激光器的工作原理,采用光刻、反應離子刻蝕和選擇化學腐蝕等微細加工技術(shù)制備出直徑為9.5μm、低溫光抽運InGaAs/InGaAsP多量子阱碟狀微腔激光器。它在光通訊、光互聯(lián)和光信息處理等方面有著很好的應用前景,可用作信息高速公路中最理想的光源。 微腔光子技術(shù),如微腔探測器、微腔諧振器、微腔光晶體管、微腔放大器及其集成技術(shù)研究的突破,可使超大規(guī)模集成光子回路成為現(xiàn)實。因此,包括美國在內(nèi)的一些發(fā)達國家都在微腔激光器的研究方面投人大量的人力和物力。長春光機與物理所的科技人員打破常規(guī),用光刻方法實現(xiàn)了碟型微腔激光器件的圖形轉(zhuǎn)移,用濕法及干法刻蝕技術(shù)制作出碟型微腔結(jié)構(gòu),在國內(nèi)首次研制出直徑分別為8μm、4.5μm和2μm的光泵浦InGaAs/InGaAsP微碟激光器。其中,2μm直徑的微碟激光器在77K溫度下的激射闊值功率為5μW,是目前國際上報道中的最好水平。此外,他們還在國內(nèi)首次研制出激射波長為1.55μm,激射閾值電流為2.3mA,在77K下激射直徑為10μm的電泵浦InGaAs/InGaAsP微碟激光器以及國際上首個帶有引出電極結(jié)構(gòu)的電泵浦微柱激光器。值得一提的是,這種微碟激光器具有高集成度、低閾值、低功耗、低噪聲、極高的響應、可動態(tài)模式工作等優(yōu)點,在光通信、光互連、光信息處理等方面的應用前景廣闊,可用于大規(guī)模光子器件集成光路,并可與光纖通信網(wǎng)絡和大規(guī)模、超大規(guī)模集成電路匹配,組成光電子信息集成網(wǎng)絡,是當代信息高速公路技術(shù)中最理想的光源;同時,可以和其他光電子元件實現(xiàn)單元集成,用于邏輯運算、光網(wǎng)絡中的光互連等。 5.新型納米激光器 據(jù)報道,世界上最早的納米激光器是由美國加州大學伯克利分校的科學家于2001年制造的,當時使用的是氧化鋅納米線,可發(fā)射紫外光,經(jīng)過調(diào)整后還能發(fā)射從藍色到深紫外的激光。但是,美中不足的是只有用另一束激光將納米線中的氧化鋅晶體激活,其才會發(fā)射出激光。而新型納米激光器具備了電子自動開關(guān)的性能,無需借助外力激活,這無疑會使其實用性大為增強。 納米激光器研究對基礎(chǔ)研究和實際應用都有重要意義。首先,二維材料作為最薄的光學增益材料,已被證明可以支持低溫下的激光運轉(zhuǎn),但是這種單層分子材料是否足以支持室溫下的激光運轉(zhuǎn),在科技界尚存疑慮。室溫運轉(zhuǎn)是絕大部分激光實際應用的前提,因而新型激光的室溫運轉(zhuǎn)在半導體激光發(fā)展史上具有指標性意義。另外,由于二維材料中極強的庫倫相互作用,電子和空穴總是以激子態(tài)出現(xiàn),因而這種激光實際上與一種新型的激子極化激元的玻色-愛因斯坦凝聚密切相關(guān),是基礎(chǔ)物理領(lǐng)域目前最為活躍的課題之一。 |
1.行業(yè)新聞、市場分析。 2.新品新技術(shù)(最新研發(fā)出來的產(chǎn)品技術(shù)介紹,包括產(chǎn)品性能參數(shù)、作用、應用領(lǐng)域及圖片); 3.解決方案/專業(yè)論文(針對問題及需求,提出一個解決問題的執(zhí)行方案); 4.技術(shù)文章、白皮書,光學軟件運用技術(shù)(光電行業(yè)內(nèi)技術(shù)文檔);
如果想要將你的內(nèi)容出現(xiàn)在這里,歡迎聯(lián)系我們,投稿郵箱:service@opticsky.cn