有那么牛?給點(diǎn)分吧
中國科大實(shí)現(xiàn)紅外圖像到可見圖像轉(zhuǎn)換
從中國科技大學(xué)獲悉,該校郭光燦院士團(tuán)隊(duì)團(tuán)隊(duì)史保森教授、周志遠(yuǎn)副教授等人結(jié)合螺旋相襯技術(shù),利用準(zhǔn)相位匹配和頻過程實(shí)現(xiàn)了從紅外圖像到可見圖像的上轉(zhuǎn)換邊緣增強(qiáng)成像,并且通過調(diào)控相位匹配實(shí)現(xiàn)了圖像的視場(chǎng)增強(qiáng)。該項(xiàng)技術(shù)在生物成像、模式識(shí)別以及紅外遙感等領(lǐng)域具有重要的潛在應(yīng)用價(jià)值。該項(xiàng)研究成果日前發(fā)表在應(yīng)用物理權(quán)威期刊《應(yīng)用物理評(píng)論》上。
工作于紅外波段的圖像探測(cè)器普遍存在著靈敏度差、效率較低、價(jià)格昂貴等缺點(diǎn)。通過頻率上轉(zhuǎn)換的方法將紅外圖像信息轉(zhuǎn)換到可見光波段,然后采用性能優(yōu)、價(jià)格低的可見光波段圖像探測(cè)器,是解決紅外圖像探測(cè)的一種行之有效的方法。相襯增強(qiáng)成像技術(shù)是一種重要的圖像處理技術(shù),將螺旋相襯邊緣增強(qiáng)技術(shù)與非線性和頻過程相結(jié)合來實(shí)現(xiàn)紅外圖像信息的上轉(zhuǎn)換邊緣增強(qiáng),對(duì)圖像處理和探測(cè)具有重要的意義。 史保森、周志遠(yuǎn)團(tuán)隊(duì)長期從事結(jié)構(gòu)光場(chǎng)的非線性頻率轉(zhuǎn)換相關(guān)研究,先后研究了渦旋光束的倍頻、和頻過程中的傳輸、演化和守恒特性,并且發(fā)展了單光子結(jié)構(gòu)光場(chǎng)的頻率上轉(zhuǎn)換探測(cè)技術(shù)。他們通過在上轉(zhuǎn)換成像過程引入渦旋泵浦光,利用準(zhǔn)相位匹配PPKTP晶體作為螺旋濾波和頻率上轉(zhuǎn)換介質(zhì),成功實(shí)現(xiàn)了紅外光照射下物體邊緣增強(qiáng)的上轉(zhuǎn)換探測(cè)。同時(shí),通過調(diào)控非線性過程中的相位匹配,實(shí)現(xiàn)了最高2.1倍的視場(chǎng)增強(qiáng)。實(shí)驗(yàn)結(jié)果與求解非線性耦合波方程數(shù)值模擬的結(jié)果很好地吻合。 相關(guān)鏈接:https://journals.aps.org/prapplied/pdf/10.1103/PhysRevApplied.11.044013 |
最新評(píng)論
-
13169872681 2019-04-15 16:28
-
dushunli 2019-04-15 17:02圖像轉(zhuǎn)換!
-
星空38 2019-04-15 20:43中國科大實(shí)現(xiàn)紅外圖像到可見圖像轉(zhuǎn)換
-
flash閃 2019-04-15 20:48好好學(xué)習(xí)天天向上
-
mang2004 2019-04-15 22:43Up-Conversion Imaging Processing With Field-of-View and Edge Enhancement
Shi-Kai Liu, Chen Yang, Shi-Long Liu, Zhi-Yuan Zhou, Yan Li, Yin-Hai Li, Zhao-Huai Xu, Guang-Can Guo, and Bao-Sen Shi
Phys. Rev. Applied 11, 044013 (2019) – Published 4 April 2019
Spiral phase contrast (SPC) imaging is an important technique in edge detection. For infrared wavelengths, though, typical charge-coupled-device detectors are inefficient, slow, and noisy; to exploit them, one should instead work in the visible part of the spectrum. Here up-conversion SPC imaging is realized, based on sum-frequency generation, which also has the advantage of enhancing the field of view. This versatile technique is quite promising for e.g. reagent-free biological imaging, pattern recognition, and up-conversion edge detection.