IC設計完整流程及工具IC的設計過程可分為兩個部分,分別為:前端設計(也稱邏輯設計)和后端設計(也稱物理設計),這兩個部分并沒有統(tǒng)一嚴格的界限,凡涉及到與工藝有關的設計可稱為后端設計。 前端設計的主要流程: 1、規(guī)格制定 芯片規(guī)格,也就像功能列表一樣,是客戶向芯片設計公司(稱為Fabless,無晶圓設計公司)提出的設計要求,包括芯片需要達到的具體功能和性能方面的要求。 2、詳細設計 Fabless根據(jù)客戶提出的規(guī)格要求,拿出設計解決方案和具體實現(xiàn)架構,劃分模塊功能。 3、HDL編碼 使用硬件描述語言(VHDL,Verilog HDL,業(yè)界公司一般都是使用后者)將模塊功能以代碼來描述實現(xiàn),也就是將實際的硬件電路功能通過HDL語言描述出來,形成RTL(寄存器傳輸級)代碼。 4、仿真驗證 仿真驗證就是檢驗編碼設計的正確性,檢驗的標準就是第一步制定的規(guī)格?丛O計是否精確地滿足了規(guī)格中的所有要求。規(guī)格是設計正確與否的黃金標準,一切違反,不符合規(guī)格要求的,就需要重新修改設計和編碼。設計和仿真驗證是反復迭代的過程,直到驗證結果顯示完全符合規(guī)格標準。仿真驗證工具Mentor公司的Modelsim, Synopsys的VCS,還有Cadence的NC-Verilog均可以對RTL級的代碼進行設計驗證,該部分個人一般使用第一個-Modelsim。該部分稱為前仿真,接下來邏輯部分綜合之后再一次進行的仿真可稱為后仿真。 5、邏輯綜合――Design Compiler 仿真驗證通過,進行邏輯綜合。邏輯綜合的結果就是把設計實現(xiàn)的HDL代碼翻譯成門級網(wǎng)表netlist。綜合需要設定約束條件,就是你希望綜合出來的電路在面積,時序等目標參數(shù)上達到的標準。邏輯綜合需要基于特定的綜合庫,不同的庫中,門電路基本標準單元(standard cell)的面積,時序參數(shù)是不一樣的。所以,選用的綜合庫不一樣,綜合出來的電路在時序,面積上是有差異的。一般來說,綜合完成后需要再次做仿真驗證(這個也稱為后仿真,之前的稱為前仿真)邏輯綜合工具Synopsys的Design Compiler,仿真工具選擇上面的三種仿真工具均可。 6、STA Static Timing Analysis(STA),靜態(tài)時序分析,這也屬于驗證范疇,它主要是在時序上對電路進行驗證,檢查電路是否存在建立時間(setup time)和保持時間(hold time)的違例(violation)。這個是數(shù)字電路基礎知識,一個寄存器出現(xiàn)這兩個時序違例時,是沒有辦法正確采樣數(shù)據(jù)和輸出數(shù)據(jù)的,所以以寄存器為基礎的數(shù)字芯片功能肯定會出現(xiàn)問題。STA工具有Synopsys的Prime Time。 7、形式驗證 這也是驗證范疇,它是從功能上(STA是時序上)對綜合后的網(wǎng)表進行驗證。常用的就是等價性檢查方法,以功能驗證后的HDL設計為參考,對比綜合后的網(wǎng)表功能,他們是否在功能上存在等價性。這樣做是為了保證在邏輯綜合過程中沒有改變原先HDL描述的電路功能。形式驗證工具有Synopsys的Formality。前端設計的流程暫時寫到這里。從設計程度上來講,前端設計的結果就是得到了芯片的門級網(wǎng)表電路。 Backend design flow后端設計流程 : 1、DFT Design ForTest,可測性設計。芯片內(nèi)部往往都自帶測試電路,DFT的目的就是在設計的時候就考慮將來的測試。DFT的常見方法就是,在設計中插入掃描鏈,將非掃描單元(如寄存器)變?yōu)閽呙鑶卧。關于DFT,有些書上有詳細介紹,對照圖片就好理解一點。DFT工具Synopsys的DFT Compiler 2、布局規(guī)劃(FloorPlan) 布局規(guī)劃就是放置芯片的宏單元模塊,在總體上確定各種功能電路的擺放位置,如IP模塊,RAM,I/O引腳等等。布局規(guī)劃能直接影響芯片最終的面積。工具為Synopsys的Astro 3、CTS Clock Tree Synthesis,時鐘樹綜合,簡單點說就是時鐘的布線。由于時鐘信號在數(shù)字芯片的全局指揮作用,它的分布應該是對稱式的連到各個寄存器單元,從而使時鐘從同一個時鐘源到達各個寄存器時,時鐘延遲差異最小。這也是為什么時鐘信號需要單獨布線的原因。CTS工具,Synopsys的Physical Compiler 4、布線(Place & Route) 這里的布線就是普通信號布線了,包括各種標準單元(基本邏輯門電路)之間的走線。比如我們平常聽到的0.13um工藝,或者說90nm工藝,實際上就是這里金屬布線可以達到的最小寬度,從微觀上看就是MOS管的溝道長度。工具Synopsys的Astro 5、寄生參數(shù)提取 由于導線本身存在的電阻,相鄰導線之間的互感,耦合電容在芯片內(nèi)部會產(chǎn)生信號噪聲,串擾和反射。這些效應會產(chǎn)生信號完整性問題,導致信號電壓波動和變化,如果嚴重就會導致信號失真錯誤。提取寄生參數(shù)進行再次的分析驗證,分析信號完整性問題是非常重要的。工具Synopsys的Star-RCXT 6、版圖物理驗證 對完成布線的物理版圖進行功能和時序上的驗證,驗證項目很多,如LVS(Layout Vs Schematic)驗證,簡單說,就是版圖與邏輯綜合后的門級電路圖的對比驗證;DRC(Design Rule Checking):設計規(guī)則檢查,檢查連線間距,連線寬度等是否滿足工藝要求,ERC(Electrical Rule Checking):電氣規(guī)則檢查,檢查短路和開路等電氣 規(guī)則違例;等等。工具為Synopsys的Hercules實際的后端流程還包括電路功耗分析,以及隨著制造工藝不斷進步產(chǎn)生的DFM(可制造性設計)問題,在此不說了。物理版圖驗證完成也就是整個芯片設計階段完成,下面的就是芯片制造了。物理版圖以GDSII的文件格式交給芯片代工廠(稱為Foundry)在晶圓硅片上做出實際的電路,再進行封裝和測試,就得到了我們實際看見的芯片。 芯片失效分析微信13488683602
|