老司机午夜精品_国产精品高清免费在线_99热点高清无码中文字幕_在线观看国产成人AV天堂_中文字幕国产91

中國科大首次實現(xiàn)糾纏系統(tǒng)波函數(shù)的直接測量

發(fā)布:cyqdesign 2019-10-11 16:22 閱讀:15999
中國科學院院士、中國科學技術(shù)大學教授郭光燦團隊在量子力學基本問題的研究中取得新進展,該團隊的李傳鋒、許小冶等人與斯德哥爾摩大學博士Yaron Kedem合作,首次提出并實驗實現(xiàn)了多體非局域波函數(shù)的直接測量。該研究成果于10月9日發(fā)表在國際期刊《物理評論快報》上,并入選“編輯推薦”論文。美國物理學會網(wǎng)站“物理新聞與評論”欄目以《直接測量糾纏態(tài)》為題專文報道該項成果。 N+hedF@ZU  
Md?acWE*L  
  波函數(shù)是量子力學最核心的概念之一,不論是單體還是多體量子系統(tǒng),其狀態(tài)都可以用波函數(shù)完全刻畫。目前最常用的測量波函數(shù)的方法是量子態(tài)層析,然而該方法隨著待測系統(tǒng)規(guī)模的增加,對資源的消耗呈指數(shù)增長。2011年科學家們基于弱測量和弱值(Weak Value)提出單光子空間波函數(shù)的直接測量方法,避免了量子態(tài)層析中復雜的重構(gòu)過程。然而對于多體特別是含有糾纏的量子系統(tǒng)的波函數(shù)直接測量,卻一直未能取得突破,難點在于無法提取多體系統(tǒng)非局域可觀測量的弱值。 XK3!V|y`  
]'6'<S  
  李傳鋒研究組繼首次實現(xiàn)非局域可觀測量的量子測量[Phys. Rev. Lett. 122, 100405 (2019)]后,與Yaron Kedem一起另辟蹊徑,通過巧妙構(gòu)造哈密頓量,實現(xiàn)對多體系統(tǒng)局域可觀測量之和的模量(Modular Value)的測量,然后利用它與非局域可觀測量的弱值的數(shù)學關(guān)系,直接給出后者的取值。該方法成功解決了提取多體系統(tǒng)非局域可觀測量的弱值這一難題,可以很方便地應用到多體非局域波函數(shù)的測量中。研究組在實驗上利用雙光子超糾纏成功演示了雙光子非局域波函數(shù)的直接測量。他們將兩個光子制備到偏振和路徑分別處于最大糾纏態(tài)的超糾纏態(tài)上,再實現(xiàn)偏振和路徑間的相互作用,最后通過路徑指針在不同投影基下的計數(shù)直接測量出雙光子偏振態(tài)的波函數(shù)。 sU0Stg8&b  
{9Xm<}%u]]  
  該成果首次實現(xiàn)多體糾纏系統(tǒng)波函數(shù)的直接測量,《直接測量糾纏態(tài)》一文評論該成果對未來量子信息技術(shù)中大規(guī)模糾纏系統(tǒng)的探測提供高效的方法。該工作還澄清了波函數(shù)的直接測量技術(shù)源自于弱值而非弱測量,更為重要的是,對含有糾纏的多體量子系統(tǒng)波函數(shù)的直接測量,證明這是一項純粹的量子技術(shù),而非基于經(jīng)典的干涉過程。該方法為量子物理基本問題的研究帶來新的思路,并對量子信息技術(shù)的發(fā)展起到重要推動作用。 i<Q& D\Pv  
iA&oLu[y3  
J$#D:KaU:N  
直接測量兩光子非局域波函數(shù)的實驗裝置圖
9D%qXU  
  該論文共同第一作者為中科院量子信息重點實驗室博士研究生潘維韋與特任副研究員許小冶。該工作得到科技部、國家自然科學基金委、中科院、安徽省以及博士后創(chuàng)新人才支持計劃的資助。 >^ ;(c4C  
_Ws#UL+Nq  
  論文鏈接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.150402 Vv2{^ !aZ  
  相關(guān)鏈接:https://physics.aps.org/articles/v12/110
分享到:

最新評論

譚健 2019-10-13 22:43
波函數(shù)是量子力學最核心的概念之一
wangjin001x 2019-10-13 23:12
中國科大首次實現(xiàn)糾纏系統(tǒng)波函數(shù)的直接測量
mam07 2019-10-13 23:58
潘校長厲害~!
lufan 2019-10-14 00:04
中國科大首次實現(xiàn)糾纏系統(tǒng)波函數(shù)的直接測量
dushunli 2019-10-14 00:16
糾纏系統(tǒng)波函數(shù)!
bairuizheng 2019-10-14 00:50
對含有糾纏的多體量子系統(tǒng)波函數(shù)的直接測量,證明這是一項純粹的量子技術(shù),而非基于經(jīng)典的干涉過程。
mang2004 2019-10-14 01:35
相關(guān)閱讀: P58\+9d_  
Directly Measuring an Entangled State QT7w::ht  
$#6 Fnhh}  
Measuring the quantum state of a system is difficult. The common way, called tomography, involves measuring multiple copies of the system and using the statistics of that ensemble to algorithmically guess the closest possible quantum state [1]. A more direct method exists using so-called weak values, which are the result of weak (low-precision) measurements on a pre- and postselected quantum state [2–4]. However, the weak value approach is limited when it comes to measuring nonlocal (spatially separated) quantum states. In a new work, the group of Guang-Can Guo at the University of Science and Technology of China has shown that it is possible to directly measure the wave function of two spatially separated entangled photons [5]. Rather than weak values, the researchers employ modular values, which are characterizations of a quantum system obtained by making a strong measurement of a qubit, called the meter, that is coupled to the system [6]. This demonstration may lead to more efficient methods for probing large entangled systems, as are imagined in future quantum information technologies. 7AZ5%o  
AlPL;^Y_l  
 9'L1KQ  
O[i2A (  
To understand the context of this new work, let us consider the state of a single electron. We can think about all the possible measurements that can be made on the electron. For example, we can measure its spin direction along the z axis (up or down) or along the x axis. We can observe its position or its momentum in a certain direction. Quantum theory restricts these measurements by limiting the precision of knowledge obtainable for two complimentary observables, such as position and momentum. Additionally, there is the problem of measurement disturbance, where a strong measurement of one observable (position) irreversibly alters the result of another observable (momentum). However, as many have discovered, it is possible to make weak measurements where the disturbance is minimal. In these situations, some limited information can still be gained about complimentary observables without violating the strict limits set by quantum theory [7]. As an example, scientists can measure the spin of an electron by deflecting it with a magnetic field. If the magnetic field is weak enough, spin-up and spin-down electrons will only be displaced by a small amount from their mean trajectories. Such a weak measurement can leave the original spin state of the electron intact. `D&#U'wB   
@c.11nfn`  
}'@tA")-)  
A"P\4  
To extract the most from a weak measurement, researchers have devised experiments where they preselect and postselect which quantum states they look at. The output of such a measurement is called a weak value [4]. The exact meaning of the weak value has been debated, with some researchers claiming that it gives a direct view of underlying quantum features and others suggesting that weak values can violate standard quantum limits. Still, it is clear that the study of weak values represents a bone fide advance in our understanding of quantum measurement, particularly in the direct measurement of wave functions. B`'}&6jr.  
;j[q?^ b  
mSVX4XW<  
|q1b8A