老司机午夜精品_国产精品高清免费在线_99热点高清无码中文字幕_在线观看国产成人AV天堂_中文字幕国产91

切換到寬版
  • 廣告投放
  • 稿件投遞
  • 繁體中文
    • 737閱讀
    • 0回復(fù)

    [技術(shù)]標(biāo)準(zhǔn)具和晶體中的電磁場傳輸算法 [復(fù)制鏈接]

    上一主題 下一主題
    離線infotek
     
    發(fā)帖
    5280
    光幣
    20640
    光券
    0
    只看樓主 倒序閱讀 樓主  發(fā)表于: 2021-12-10
    由平行平面構(gòu)成的光學(xué)層在光學(xué)中廣泛應(yīng)用。層狀結(jié)構(gòu)可以用作許多不同情況的模型,像平板和標(biāo)準(zhǔn)具;谶@個事實,光與層狀結(jié)構(gòu)相互作用的主題一直引起大家的注意并且對此已經(jīng)進行了大量的研究。 "b) hj?  
    ?hYWxWW  
    在這類研究中,大多數(shù)觀點都側(cè)重于平面波,然而僅僅少數(shù)的研究使用了平面波譜方法(SPW)來考慮一般的電磁場。例如,參考文獻[1-6]中研究了各向同性-各向同性的界面上,高斯光束的反射率和透射率;在參考文獻[7-11]中研究了各向同性層或者平板的情況;參考文獻[12-22]討論了各向同性-各向異性界面的情況,在參考文獻[23-26]中則討論了各向異性層或者平板的情況。 |)S*RQb\  
    )FN$Jlo  
    上面所提到的許多研究都用于特定的研究主題,像[1,3,5]中研究了高斯光束全內(nèi)反射的橫向偏移,并且他們常常關(guān)注于具體的配置。因此,將這些方法推廣到更一般的情況的可能性受到了限制。 Y]DC; ,  
    q@1xYz:J  
    在這篇文章中,我們從一個更一般的觀點來考慮此問題。光學(xué)層幾乎不會單獨使用;相反,他們常常是一個光學(xué)系統(tǒng)的一部分并且和其他的元件一起使用,如圖1中所示;诖耸聦,我們遵循場追跡的概念[27],并使用不同的場追跡算子組合[28-32],如圖1中所示,以對一個包含了層介質(zhì)元件的系統(tǒng)進行物理光學(xué)模擬。考慮到模擬是對整個系統(tǒng)而不是單個元件,仿真層結(jié)構(gòu)必須與系統(tǒng)的前后部分相連接。這要求我們傳播步驟(圖1中的P)進行適當(dāng)?shù)目紤],將前一個元件的輸出連接到當(dāng)前元件的輸入,并將當(dāng)前元件的輸出傳遞到下一個元件。一般情況下,這樣的傳輸步驟會出現(xiàn)在平行或者非平行平面之間。在參考文獻[28,29]中已經(jīng)提到了平行平面間幾種有效的傳輸方法,在參考文獻[33]中則可以找到對非平行平面間傳輸?shù)囊粋詳細(xì)的討論。在這篇文章中,我們不會研究傳輸步驟,但會關(guān)注層狀結(jié)構(gòu)的元件算子C。 }=|plz}  
    gux?P2f  
    此外,從數(shù)值計算的觀點出發(fā),為了執(zhí)行一個連續(xù)且有效的系統(tǒng)模擬,要求元件算子C KW/LyiP#  
    k; >Vh'=X  
    正確地處理采樣場數(shù)據(jù)并和其他的算子以一種統(tǒng)一的格式傳遞場數(shù)據(jù); h4Xz"i{z  
    1u"#rC>7.4  
    優(yōu)化數(shù)值計算的效率。 $g),|[ x+(  
    [_: GQ  
    考慮到上述兩個標(biāo)準(zhǔn),我們開發(fā)了一種具有自動數(shù)值采樣規(guī)則的SPW方法。與之前一些利用積分方法對空間和角譜相關(guān)的傅里葉變換進評估的研究相比(如參考文獻[23]中的二維中點規(guī)則和參考文獻[12-14,20,25]中的Stamnes–Spjelkavik–Pedersen方法[34]),我們使用了快速傅里葉變換(FFT)技術(shù),此技術(shù)在大部分?jǐn)?shù)值軟件包中容易訪問并且效率高。再加上在角譜域中經(jīng)過深入考慮的數(shù)值采樣規(guī)則,我們的方法具有一般適用性,對層元件和入射場沒有任何限制。因此,此算法可以直接包含在一個物理光學(xué)系統(tǒng)模擬之中。 AcHeZb8b  
    dSe d 6  
        
    圖1.結(jié)合使用不同的場追蹤算子來模擬光學(xué)系統(tǒng): C是元件算子,P是相鄰元件之間的傳輸算子。
    Dt(xj}[tC  
    2.理論 D 9UM8Hxi  
    ij1YV2v  
    如圖2所示,層狀結(jié)構(gòu)分別由兩個位于的平行平面構(gòu)成。的區(qū)域充滿了復(fù)折射率為的均勻各向同性介質(zhì)。參考文獻[27]中表明使用橫向分量Ex和Ey已足夠表征均勻各向同性介質(zhì)中電磁場了。因此,我們可以使用以下表達式來描述此問題: )iFXa<5h  
    =_CH$F!U  
    其中,分別在平面處定義輸入和輸出橫向電場矢量,(兩者位于界面的數(shù)學(xué)位置,但總是認(rèn)為在均勻介質(zhì)的一側(cè)),由下式給出 +!ZfJZls  
    eJeL{`NS  
    其中  。方程(1)中的元件算子是一個2x2的矩陣形式, d4p6.3  
    BN~ndWRK  
    y+KAL{AGK  
    圖2.層狀結(jié)構(gòu)分別由兩個位于的平行平面構(gòu)成。的區(qū)域由均勻各向同性介質(zhì)填充,其折射率分別是。輸出場和輸出場在層表面進行定義,但總是在相應(yīng)的各向同性介質(zhì)的一側(cè)。
    =.w~qL  
    在這章節(jié),我們的目標(biāo)是找到C的精確的形式,以連接層介質(zhì)元件的輸入和輸出場。為了研究與層結(jié)構(gòu)的相互作用,我們對輸入橫向場分量進行了一個傅里葉變換,并獲得了 ^?*<.rsG  
    :(@P *"j  
    其中, F表示二維傅里葉變換, |a %Wd  
    [LO=k|&R  
    M6GiohI_"P  
    -hc8IS  
    。逆傅里葉變換定義如下 J 5xMA-  
    2$v8{Y&  
    方程(6)中的積分可以解釋為將分解為具有不同橫向波矢分量κ的平面波。因此,在我們的情況下,每個輸入平面波都可以單獨處理——我們首先計算每個輸入平面波的輸出,然后進行求和從而獲得輸出場。 RC?vU  
    此外,根據(jù)邊界條件對電磁場施加的連續(xù)性要求,可以顯示出一個給定的輸入平面波在與層結(jié)構(gòu)相互作用的過程中其橫向波矢分量κ必定保持不變。同樣可以顯示出,通過疊加原理的有效性,不同的κ之間沒有耦合。因此,對于輸出角譜,我們可以寫下 F)v  
    UmY{2 nzY  
    其中 ;#9ioG x  
    1}Y3|QxF  
    p$uPj*  
    |>Fz:b d  
    D c;k)z=  
    公式(8)中分別是透射和反射系數(shù)矩陣。為了計算T(κ) 或者R(κ),我們選擇使用數(shù)值穩(wěn)定S矩陣方法。為了計算S矩陣,首先必須確定每個各向異性層的平面波。基于文獻[35]中Berreman的4x4矩陣公式,Landry和Maldonado開發(fā)并展示了一種數(shù)值友好的形式,見參考文獻[23]。我們采用了他們的方法,對于每一層,求解了參考文獻[23]中由方程(28)所描述的特征系統(tǒng)的特征值和特征向量。 +bT[lJ2O>G  
    不同于[23,25]中直接使用本征解來構(gòu)建一個轉(zhuǎn)換矩陣,另外,我們還需要根據(jù)他們的傳輸方向整理出平面波,這是為計算S矩陣所做的一個必需的準(zhǔn)備。為此,我們遵循[36]中4.3部分由Li所提出的標(biāo)準(zhǔn)。 tG ZMIG_  
    然后可以應(yīng)用遞歸S矩陣公式。我們在這篇文中不再重復(fù)給出已發(fā)展成熟的S矩陣方法,讀者可以參考文獻[37]中的方程(5)-(8)以獲得更多的信息。在我們的情況中,由于沒有反向傳輸輸入場,我們僅對正向透射或者反向反射感興趣,因此這篇文章中的矩陣系數(shù)T(κ) 和R(κ)對應(yīng)于[37]中方程(5c)或者(5d)中的子矩陣T_uu 或者R_du。 (4Nj3x o  
    一旦獲得了矩陣系數(shù),通過方程(7)即可獲得輸出角譜。對輸出角譜進行一個逆傅里葉變換,我們獲得了輸出橫向場矢量 E^Q J50  
    *+nw%gZG  
    .rS. >d^n  
    :wG )  
    通過聯(lián)合方程(4),(7),(9),我們可以寫出從輸入場到輸出場整個計算流程,如果 :(wFNK/0{  
    我們以透射的情況作為例子,則 t=9f:,I$  
    tY: Nq*@  
    <fF|AbC:  
    K:GEC-  
    因此,方程(1)中元件算子C的精確形式如下 lQBE q"7$  
    '#=0q  
    bE{Y K  
    MTKNIv|  
    通過使用系數(shù)矩陣R(κ)代替 T(κ),可以獲得反射情況的表達式。 P$Oj3HD LM  
    -e_o p'`  
    3.算法 W6_