圖3—綠色光線進入卡塞格林望遠鏡后入射到桶狀主遮光罩上發(fā)生散射,而后射向主反射鏡和次反射鏡,(分別以紅色和藍色代表),部分這些光線最終反射到探測器上。 邊緣衍射 當(dāng)孔徑尺寸和波長比相對較小的時候(104 或者更小),場外光源經(jīng)孔徑光闌發(fā)生的邊緣衍射可能是雜散光的一個重要來源。 紅外系統(tǒng)中的自輻射 熱紅外或者熱成像系統(tǒng)中也可以出現(xiàn)雜散光,該雜散光是由設(shè)備自身的熱輻射引起的。 這類系統(tǒng)通過檢測疊加在一個大背景上的一個小的信號來運轉(zhuǎn)。 室溫情況下,黑體發(fā)射率曲線的峰值在大概10um處. 因而在這種波長下,環(huán)境也會"發(fā)光".隨著溫度或者發(fā)射率的變化,黑體發(fā)射曲線在發(fā)熱過程中會有很小的變化。 熱成像系統(tǒng)一般通過減去背景來增強紅外圖像的對比度。當(dāng)背景不均勻,比如說有水仙花效應(yīng), 就產(chǎn)生了一個雜散光信號。 特別是, 當(dāng)冷卻了的探測器的一個圖像在其自身成像的時候,背景的局部嚴(yán)重缺損就產(chǎn)生了。典型的表現(xiàn)為在圖像的中心形成黑斑。人們可能稱它為“雜斑”而不是雜散光。 紅外輻射計測量絕對輻射而不是一個相對輻射,所以任何背景輻射都是不可接受的。 在這樣一個設(shè)備中,冷卻整個設(shè)備來降低溫度以消除因為自身散射引起的雜散光是必要的。 圖4—該圖演示這樣一個簡單的問題,一個溫?zé)岬牟鑹兀浔砻嬗兄煌陌l(fā)射率和溫度分布。茶壺通過一個單透鏡成像,探測器放置在透鏡后面(看不見)。許多紅外系統(tǒng)中都發(fā)現(xiàn)機械結(jié)構(gòu)自身輻射到探測器的問題。而解決的方法不是移除自輻射源就是對這些輻射加以遮擋。 以上幾種現(xiàn)象的組合 以上現(xiàn)象的組合也會發(fā)生,并且可能很重要。 比如, 自輻射光線可能繼而從光學(xué)器件上散射進入視場里面。由孔徑衍射的光線也可能從光學(xué)器件上面散射進入視場內(nèi)。 2.FRED 怎樣呈現(xiàn)散射光? 有幾種方法可以跟蹤散射光。第一種方法是制造一個光源,再追跡通過光學(xué)系統(tǒng)的光線。第二種方法是通過系統(tǒng)從探測器的進行反向光線追跡。能夠通過使用任何3D光線追跡軟件程序來顯示雜散光光路是相當(dāng)重要的。光學(xué)工程師利用FRED的軟件來顯示雜散光發(fā)生的位置。反射光線以及折射光線僅僅是問題的一部分,散射光也是一個問題。 3、FRED怎樣產(chǎn)生幾何界面? 系統(tǒng)的幾何結(jié)構(gòu)可以直接在FRED 中通過運用簡單圖形界面來生成。也可以輸入由機械軟件設(shè)計的IGES 或者STEP 格式文件,和光學(xué)設(shè)計程序設(shè)計的文件,或者從ASAP 輸出文檔中轉(zhuǎn)換過來。FRED程序有許多選項用于生成表面,包括標(biāo)準(zhǔn)平面,二次曲線,柱面,橢圓體, 雙曲線,環(huán)形,多項式曲面,澤尼克,非均勻有理B樣條, 網(wǎng)狀,旋轉(zhuǎn)曲線,壓邊曲線,復(fù)合曲線,凹線和用戶自定義表面。圖1和圖2中所示的為FRED繪制的那些表面之一。 因為FRED 有一個多文檔用戶界面,所以可以在文檔間進行元件的相互剪切,復(fù)制以及粘貼。 實體在理論上可能被設(shè)置為各層組裝體,組件和元件等等。它符合系統(tǒng)的物理層結(jié)構(gòu);任何一個物體都可以在任意的坐標(biāo)系統(tǒng)中定義。 任何表面都可能被任何隱式曲面或者任何孔徑收集曲線所整理(切開),以下是詳細說明。 4 、FRED 怎樣追蹤光路? FRED 有能力去完成一次高級的光線追跡。 這種光線追跡可以清晰地追蹤系統(tǒng)中所有光線的所有路徑。 圖5顯示了在圖1中的兩個雙膠合透鏡的光線路徑的列表。 光線歷史報表是一個對所有光線的完整報告,記載了有多少光線以這條光路發(fā)射,他們怎樣到達最終的實體(在這個事例中是焦平面)以及他們穿過了多少表面(事件計數(shù))。 也可以取任一條光線追跡的光路然后將其復(fù)制到用戶定義光路列表 (選擇光路, 將鼠標(biāo)移至光路然后選擇一個選項將這條光路復(fù)制到用戶定義光路列表)。 這條光路將立刻在高級光線追跡中呈現(xiàn)一個可選光路作為一個可用的光線追跡方法。還可以僅對這條光線繪制彌散斑圖或點擴散函數(shù)圖。 |