本文為網(wǎng)絡(luò)收集,作者未知。
$vC!Us{z Xq9n-;%zL 計算機數(shù)控研磨和拋光技術(shù)是一種由計算機控制的精密機床將工件表面磨削成所需要的面形,然后用柔性拋光模拋光,使工件在不改變精磨面形精度的條件下達到鏡面光潔度的光學(xué)零件制造技術(shù)。該技術(shù)主要用來加工中、大尺寸的非球面光學(xué)零件。加工零件時,磨削工具受計算機控制,在工件表面進行磨削去除加工。磨削工具根據(jù)工件的不同加工余量,在工件表面停留不同的時間來實現(xiàn)非球面加工。工件加工精度主要取決于測量精度和所采用的誤差校正方法。
]F5qXF5 a+TlZE>8 非球面光學(xué)零件的精密研磨拋光比較普遍采用的一種技術(shù)是:小型磨床修正研磨拋光法。
8v},&rhPQq YI=03}I 小型磨床研磨拋光法分為縱向掃描和光柵掃描兩種方式?v向掃描方式是:被加工的工件以一定的速度旋轉(zhuǎn),拋光器則沿著貫穿工件軸心的斷面進行搖動。縱向掃描方式對工件軸心附近的形狀控制和非旋轉(zhuǎn)對稱部分的形狀誤差的修正研磨拋光比較困難,但是研磨時間可望縮短,設(shè)備比較簡單。光柵掃描方式則是:被加工的工件不旋轉(zhuǎn),拋光器在工件的表面移動研磨拋光。這種方式不僅容易進行非旋轉(zhuǎn)對稱部分的修正研磨拋光,而且還可以進行離軸光學(xué)零件的研磨拋光加工。但是,此種方式的設(shè)備組成較為復(fù)雜,成本比較高。
$W46!U3 Y7yh0r_ 為了提高加工精度,小型磨床加工系統(tǒng)必需具備很高的精度和反復(fù)再現(xiàn)性、研磨去除量不隨時間變化而變化、高精度的模擬計算、和與實際研磨的一致性等條件。小型磨床研磨拋光加工的工藝流程大致如下:首先由三維測試機、激光干涉儀測出加工面的形狀精度,求出面形誤差。工作站根據(jù)面形誤差計算出需要研磨拋光的軌跡,并將該研磨拋光軌跡轉(zhuǎn)換成數(shù)控編碼傳送給磨床進行加工。加工完了后進行面形精度測試。面形精度若是沒有達到要求,再反復(fù)地進行計算、加工。通過這樣反復(fù)地進行面形測試、計算、修正研磨拋光,即可達到提高面形精度的目的。
R)AFaP | `[<j5(T 小型磨床最早是由美國研究開發(fā)的,其磨頭直徑不超過工件的1/3,由計算機計算去除量,加工精度比較高。可以高精度地加工直徑1500~1800mm的大口徑非球面。目前,美國亞里桑那大學(xué)的光學(xué)中心,已基本上用計算機數(shù)控研磨拋光加工技術(shù)取代了傳統(tǒng)的手工研磨拋光加工非球面光學(xué)零件。另外美國羅徹斯特大學(xué)光學(xué)制造中心也已獲得了300多萬美元的國防基金和幾家大公司的資助,實現(xiàn)了非球面透鏡生產(chǎn)的自動化。
5h9`lS2 GB1[`U% 80年代末,日本研制出了的超精密數(shù)控范成法研磨機,使用該研磨機加工出的光學(xué)零件,其面形精度達到了0.08μm,表面粗糙度的均方根值為0.2nm。若用瀝青拋光模進行加工,表面粗糙度的均方根值能達到0.035nm。最近,日本采用門型機械加工中心,使用4000#~8000#鑄鐵絲結(jié)合金剛石砂輪,利用ELID(在線電解修正法)磨削法,磨削BK-7光學(xué)玻璃,所獲得的非球面的面形精度為1μm,表面粗糙度為43nmRmax。
S(^*DV !4 4