1
磨削技術發(fā)展概述
*_,: &Ur 5W4Tp% Lda 一般來講,按砂輪線速度Vs的高低將磨削分為普通磨削(Vs<45m/s)、高速磨削(45≤Vs<150m/s)、超高速磨削(Vs≥150m/s)。按磨削
精度將磨削分為普通磨削、精密磨削(加工精度1µm~0.1µm、表面粗糙度Ra0.2µm~0.1µm)、超精密磨削(加工精度<0.1µm,表面粗糙度Ra≤0.025µm)。按磨削效率將磨削分為普通磨削、高效磨削。高效磨削包括高速磨削、超高速磨削、緩進給磨削、高效深切磨削(HEDG)、砂帶磨削、快速短行程磨削、高速重負荷磨削。
a*3h|b< 6jpfo'uB$ 高速高效磨削、超高速磨削在歐洲、美國和日本等一些工業(yè)發(fā)達國家發(fā)展很快,如德國的Aachen大學、Bremm大學、美國的Connecticut大學等,有的在實驗室完成了Vs為250m/s、350m/s、400m/s的實驗。據(jù)報道,德國Aachen大學正在進行目標為500m/s的磨削實驗研究。在實用磨削方面,日本已有Vs=200m/s的磨床在工業(yè)中應用。
#BOLq`9f J*zm*~8\ 我國對高速磨削及磨具的研究已有多年的歷史,如湖南大學在70年代末期便進行了80m/s、120m/s的磨削工藝實驗;前幾年,某大學也計劃開展250m/s的磨削研究(但至今尚未見到這方面的報道),所以說有些高速磨削技術還只是實驗而已,尚未走出實驗室,技術還遠沒有成熟,特別是超高速磨削的研究還開展得很少。在實際應用中,砂輪線速度Vs一般還是45~60m/s。
e'MLLC[ 4Mr)~f rc 國內(nèi)外都采用超精密磨削、精密修整、微細磨料磨具進行亞微米級以下切深磨削的研究,以獲得亞微米級的尺寸精度。微細磨料磨削,用于超精密鏡面磨削的樹脂結合劑砂輪的金剛石磨粒平均直徑可小至4µm。日本用
激光在研磨過的人造單晶金剛石上切出大量等高性一致的微小切刃,對硬脆材料進行精密磨削加工,效果很好。超硬材料微粉砂輪超精密磨削主要用于磨削難加工材料,精度可達0.025µm。日本開發(fā)了電解在線修整(ELID)超精密鏡面磨削技術,使得用超細微(或超微粉)超硬磨料制造砂輪成為可能,可實現(xiàn)硬脆材料的高精度、高效率的超精密磨削。作平面研磨運動的雙端面精密磨削技術,其加工精度、切除率都比研磨高得多,且可獲得很高的平面度。電泳磨削技術也是一種新的超精密及
納米磨削技術。
s^lm
81; "(NJ{J#A 隨著磨削技術的發(fā)展,磨床在加工
機床中也占有相當大的比例。據(jù)1997年歐洲機床展覽會(EMO)的調(diào)查數(shù)據(jù)表明,25%的企業(yè)認為磨削是他們應用的最主要的加工技術,車削只占23%,鉆削占22%,其它占8%;而磨床在企業(yè)中占機床的比例高達42%,車床占23%,銑床占22%,鉆床占14%。我國從1949~1998年,開發(fā)生產(chǎn)的通用磨床有1800多種,專用磨床有幾百種,磨床的擁有量占金屬切削機床總擁有量的13%左右?梢,磨削技術及磨床在機械制造業(yè)中占有極其重要的位置。
zYZ^/7) 為什么磨削技術會不斷地發(fā)展?主要原因如下:
v;$cx*? (V:)`A_- 加工精度高 由于磨削具有其它加工方法無法比擬的特點,如砂輪上參與切削的磨粒多,切削刃多且?guī)缀涡螤畈煌粌H在較小的局部產(chǎn)生加工應力;磨具對斷續(xù)切削、工件硬度的變化不很敏感;砂輪可實現(xiàn)在線修銳等,因而可使加工件獲得很高的加工精度。
0WO-+eRB/ %;-r-> 加工效率高 如緩進給深磨,一次磨削深度可達到0~25mm,如將砂輪修整成所需形狀,一次便可磨出所需的工件形狀。而當Vs進一步提高后,其加工效率則更高。
hG!