Nonlinear optical phenomena in silicon waveguides:Modeling and applications E30Z`$cz:
G?ig1PB"#
Abstract: Several kinds of nonlinear optical effects have been observed in recent years using silicon waveguides, and their device applications are attracting considerable attention. In this review, we provide a unified theoretical platform that not only can be used for understanding the underlying physics but should also provide guidance toward new and useful applications. We begin with a description of the third-order nonlinearity of silicon and consider the tensorial nature of both the electronic and Raman contributions. The generation of free carriers through two-photon absorption and their impact on various nonlinear phenomena is included fully within the theory presented here. We derive a general propagation equation in the frequency domain and show how it leads to a generalized nonlinear Schr ¨ odinger equation when it is converted to the time domain. ?-,6<K1
We use this equation to study propagation of ultrashort optical pulses in the presence of self-phase modulation and show the possibility of soliton formation and supercontinuum generation. The nonlinear phenomena of cross-phase modulation and stimulated Raman scattering are discussed next with emphasis on the impact of free carriers on Raman amplification and lasing. We also consider the four-wave mixing process for both continuous-wave and pulsed pumping and discuss the conditions under which parametric amplification and wavelength conversion can be realized with net gain in the telecommunication band.