老司机午夜精品_国产精品高清免费在线_99热点高清无码中文字幕_在线观看国产成人AV天堂_中文字幕国产91

切換到寬版
  • 廣告投放
  • 稿件投遞
  • 繁體中文
    • 10035閱讀
    • 9回復(fù)

    [求助]ansys分析后面型數(shù)據(jù)如何進(jìn)行zernike多項(xiàng)式擬合? [復(fù)制鏈接]

    上一主題 下一主題
    離線niuhelen
     
    發(fā)帖
    19
    光幣
    28
    光券
    0
    只看樓主 倒序閱讀 樓主  發(fā)表于: 2011-03-12
    小弟不是學(xué)光學(xué)的,所以想請各位大俠指點(diǎn)!謝謝啦 { U<h tl4  
    就是我用ansys計(jì)算出了鏡面的面型的數(shù)據(jù),怎樣可以得到zernike多項(xiàng)式系數(shù),然后用zemax各階得到像差!謝謝啦! :m~lgb<  
     
    分享到
    離線phility
    發(fā)帖
    69
    光幣
    11
    光券
    0
    只看該作者 1樓 發(fā)表于: 2011-03-12
    可以用matlab編程,用zernike多項(xiàng)式進(jìn)行波面擬合,求出zernike多項(xiàng)式的系數(shù),擬合的算法有很多種,最簡單的是最小二乘法,你可以查下相關(guān)資料,挺簡單的
    離線phility
    發(fā)帖
    69
    光幣
    11
    光券
    0
    只看該作者 2樓 發(fā)表于: 2011-03-12
    澤尼克多項(xiàng)式的前9項(xiàng)對應(yīng)象差的
    離線niuhelen
    發(fā)帖
    19
    光幣
    28
    光券
    0
    只看該作者 3樓 發(fā)表于: 2011-03-12
    回 2樓(phility) 的帖子
    非常感謝啊,我手上也有zernike多項(xiàng)式的擬合的源程序,也不知道對不對,不怎么會有 +OmSR*fA0  
    function z = zernfun(n,m,r,theta,nflag) LKZI@i)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. >tzXbmFp;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E.3}a>f  
    %   and angular frequency M, evaluated at positions (R,THETA) on the d7P @_jO6  
    %   unit circle.  N is a vector of positive integers (including 0), and ,+RO 5n  
    %   M is a vector with the same number of elements as N.  Each element r?TK@^z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) f#t^<`7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, S#9SAX [  
    %   and THETA is a vector of angles.  R and THETA must have the same MD)"r>k  
    %   length.  The output Z is a matrix with one column for every (N,M) ?Sqm`)\>4  
    %   pair, and one row for every (R,THETA) pair. 85 hYYB0v  
    % 75HL  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike m0"\3@kB  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {;E/l(HNI  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -(.7/G'Vk>  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 12a #]E  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c v 9 6F  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )8SP$  
    % k ))*z FV  
    %   The Zernike functions are an orthogonal basis on the unit circle. %np#Bv-L  
    %   They are used in disciplines such as astronomy, optics, and lo: