太陽能光電化學(xué)轉(zhuǎn)換研究
0 引言
進入二十世紀以來,人類的工業(yè)文明得以迅猛發(fā)展,由此引發(fā)的能源危機和環(huán)境污染成為急待解決的嚴重問題,利用和轉(zhuǎn)換太陽能是解決世界范圍內(nèi)的能源危機和環(huán)境問題的一條重要途徑。世界上第一個認識到光電化學(xué) ..
2.1單層有機光敏染料電極
用真空沉積、旋轉(zhuǎn)涂布和電化學(xué)沉積等方法,將有機染料修飾在金屬、導(dǎo)電玻璃或 半導(dǎo)體表面上,在電解液中研究其光電性能。在不同金屬卟啉化合物中以Zn、Mg為中心金屬的光電性能最佳。不同功能取代基如羥基、硝基、胺基、羧基、甲 基等對光電性能有明顯的影響,說明可以通過改變功能取代基的種類和位置來優(yōu)化其光電性能。金屬酞菁化合物的光電性能也與中心金屬密切相關(guān),三價、四價酞菁化合物(AlClPc,GaClPc,InClPc,SiCl2Pc,GeCl2,TiOPc,VOPc)比二價金屬酞菁化合物(ZnPc,MgPc,CoPc,SnPc,PbPc,F(xiàn)ePc,NiPc)的光電性能優(yōu)越,這是因為三價、四價金屬酞菁的光譜響應(yīng)較寬,而且分子中的氯原子和氧原子有利于電子傳遞。酞菁銅的電化學(xué)聚合膜由于聚合物分子比單體具有更大的共軛體系,電子更易于移動和遷移,而且電聚膜與墊底接觸電阻小,因此表現(xiàn)出比其單體更佳的光電性能。除有機光敏染料外,影響光電性能的還有電解液的酸堿性和氧化還原性質(zhì)以及環(huán)境中的氧化性和還原性氣氛等。 2.2雙層有機光敏染料電極 金屬卟啉的最大吸收在410nm左右,大于410nm波長的光吸收較弱,金屬酞菁則在600-700nm波長有較強的光吸收,將不同光譜響應(yīng)的二種有機染料如四吡啶卟啉或四甲苯基卟啉與酞菁鋅或酞菁鋁組合形成雙層結(jié)構(gòu)電極,擴展了吸收太陽光譜響應(yīng)范圍,產(chǎn)生明顯的光電性能加合效應(yīng)。 具有不同半導(dǎo)體性質(zhì)的有機光敏染料可以構(gòu)成雙層有機p/n結(jié)電極,即有機固態(tài)異質(zhì)結(jié)太陽電池,如n型的北紅類與P型的酞菁類化合物組成的有機異質(zhì)結(jié)太陽電池ITO/MePTC/MPc/Ag(MePTC為北紅衍生物,MPc為InClPc、VOPc、GaClPc、TiOPc、H2Pc、ZnPc),其吸收光覆蓋了400nm900nm波長的可見光能(MePTC吸收400nm一600nm,MPc吸收600nm900nm波長的可見光),使光電流從單層染料電他的幾微安增大到幾百微安,電他的填充因子和光電轉(zhuǎn)換效率也顯著提高,吸收和熒光光譜研證明MePTC向MPc進行了能量轉(zhuǎn)移,各種MPc在真空鍍膜中形成不同分子排列的結(jié)構(gòu)對激子遷移產(chǎn)生影響,因此表現(xiàn)出不同的光電特性。在InClPc膜中進一步用VOPc摻雜改善了InClPc固體膜的晶體狀態(tài),使光電流和填充因子呈現(xiàn)出增效行為。說明有機分子的摻雜是提高有機太陽電池光電轉(zhuǎn)換效率的一條有效的途徑。 2.3有機光敏染料分子的有序組合 有機光敏染料(S)和電子給體(D)或受體分子(A)鍵合的多元光敏偶極分子(S-D-A)作為模擬光合作用反應(yīng)中心的模型化合物。近來研究非常活躍,如酞菁與球烯分子C60構(gòu)成電荷轉(zhuǎn)移復(fù)合物。卟啉、酞菁與電子受體蔥酮鍵合的二元分子由于加速了分子內(nèi)光敏電子轉(zhuǎn)移速度,使光電流和光電壓都比單元染料分子大。為更好模擬植物光合作用在高度有序體系中進行的高效光能轉(zhuǎn)換,設(shè)計合成一系列的二元、三元及四元光敏偶極分子,如卟啉-紫精(S-A)、卟啉-紫精-咔唑(S-A-D),卟啉-對苯二酯-紫精-咔唑(S-A1-A2-D)酞菁-紫精-二茂鐵(S-A-D)等。用LB膜技術(shù)將分子進行有序組合,研究不同結(jié)構(gòu)的多元偶極分子通過多步電荷轉(zhuǎn)移過程,提高了電荷分離效率,使它們的光電流和光電壓:四元分子>三元>二元.>單元分子。進一步對分子的排列、空間取向和分子問距等進行優(yōu)化使電荷分離態(tài)壽命延長至微秒級。這不僅為人工模擬光合作用光能轉(zhuǎn)換的研究提供了大量的科學(xué)信息,而且設(shè)計合成了一大批性能穩(wěn)定、結(jié)構(gòu)新穎的多元光敏偶極分子,為深入研究有機光敏染料體系的能量轉(zhuǎn)換和發(fā)展有機/納米半導(dǎo)體復(fù)合光電材料奠定了良好基礎(chǔ)。 3納米結(jié)構(gòu)半導(dǎo)體電極的光電能量轉(zhuǎn)換 九十年代以來隨著納米結(jié)構(gòu)半導(dǎo)體材料的發(fā)展,為新一代光電轉(zhuǎn)換材料的研究指明 了方向。半導(dǎo)體納米結(jié)構(gòu)材料具有不同于體材料的一些光學(xué)、電學(xué)特性,對光電化學(xué)能量轉(zhuǎn)換過程產(chǎn)生重要的影響,隨著新材料的引進,相關(guān)的新概念、新理論和新技術(shù)也大大充實了半導(dǎo)體光電化學(xué)研究內(nèi)容,成為當(dāng)前光電化學(xué)研究中最為活躍的一個新領(lǐng)域,半導(dǎo)體光電化學(xué)的研究進入了一個新階段。 |
【溫馨提示】本頻道長期接受投稿,內(nèi)容可以是:
1.行業(yè)新聞、市場分析。 2.新品新技術(shù)(最新研發(fā)出來的產(chǎn)品技術(shù)介紹,包括產(chǎn)品性能參數(shù)、作用、應(yīng)用領(lǐng)域及圖片); 3.解決方案/專業(yè)論文(針對問題及需求,提出一個解決問題的執(zhí)行方案); 4.技術(shù)文章、白皮書,光學(xué)軟件運用技術(shù)(光電行業(yè)內(nèi)技術(shù)文檔);
如果想要將你的內(nèi)容出現(xiàn)在這里,歡迎聯(lián)系我們,投稿郵箱:service@opticsky.cn
1.行業(yè)新聞、市場分析。 2.新品新技術(shù)(最新研發(fā)出來的產(chǎn)品技術(shù)介紹,包括產(chǎn)品性能參數(shù)、作用、應(yīng)用領(lǐng)域及圖片); 3.解決方案/專業(yè)論文(針對問題及需求,提出一個解決問題的執(zhí)行方案); 4.技術(shù)文章、白皮書,光學(xué)軟件運用技術(shù)(光電行業(yè)內(nèi)技術(shù)文檔);
如果想要將你的內(nèi)容出現(xiàn)在這里,歡迎聯(lián)系我們,投稿郵箱:service@opticsky.cn
文章點評
專業(yè)技術(shù)
24小時人氣排行
最新文章
- 我國物理學(xué)界的杰出代表——趙凱華先生辭世
- 什么是斯特列爾比(Strehl Ratio)?
- 低成本高速度——一種新型高速三維隨機讀取顯微鏡
- “超構(gòu)光學(xué)與非線性光子學(xué)”國際研討會在天津舉行
- 小米“變焦鏡頭以及拍攝裝置”專利公布
- 國產(chǎn)首條超高世代基板玻璃生產(chǎn)線點火投產(chǎn)
- 舜宇光學(xué)“光學(xué)攝影鏡頭”專利公布
- 北京理工大學(xué)科研團隊開辟片上光學(xué)研究新領(lǐng)域
- 利用激光冷原子方法制備成基于自旋的薛定諤貓態(tài)
- 西南激光產(chǎn)業(yè)戰(zhàn)略發(fā)展聯(lián)盟成立